COURS.

Application of Artificial Intelligence in Civil/Environmental Engineering

Webinaire / les 21, 22 et 23 février 2024 /
Code : 14-0203-ONL24

Inscrivez-vous
  • APERÇU
  • PROGRAMME
  • FORMATEUR

APERÇU

Veuillez noter :
This course is held online over 3 days on the following schedule (All times in Eastern Time Zone):

10:00 am to 3:00 pm Eastern (includes a 30 minute lunch)

No knowledge of programming is required


After participating in the course, you will be able to:

  • have an understanding of primary AI techniques,
  • have a basic understanding of evaluation methodologies for Civil/Environmental Engineering problems
  • have a working knowledge of how to apply AI technologies to real-world datasets,
  • have gained experience designing and using AI techniques in Civil/Environmental engineering problems

Description:
Artificial intelligence (AI) techniques and machine learning approaches will revolutionize many aspects of the future Civil/Environmental Engineering field. AI can be a promising tool to tackle different problems, but related aspects of civil/environmental practical cases are a significant concern worldwide. The main focus of this course is to understand and discuss the recent developments in AI applications relating to practical engineering applications.

This course introduces various topics in AI approaches and learning methods in modelling and predicting complex environmental systems. The practical examples are illustrated and will show you how to apply this technique.

Course Outline:

  • Data acquisition/Preprocessing
  • Classification methods
  • Artificial Intelligence (AI) Modeling tools
  • Post-processing

Who Should Attend:
Civil & Environmental Engineers • Project Engineers & Managers • Consultants • Designers • Operation & Maintenance personnel • Developers • Planners

All codes are user-friendly and trainees will be able to use them for their cases after this course. No knowledge of programming is required.



Veuillez noter :
This course is held online over 3 days on the following schedule (All times in Eastern Time Zone):

10:00 am to 3:00 pm Eastern (includes a 30 minute lunch)

No knowledge of programming is required


Horaire : 10:00 AM - 3:00 PM EDT

Exigences techniques

Pour les utilisateurs de PC
OS: Windows 7, 8, 10 ou plus récent

Navigateur :
IE 11 ou plus récent, Edge 12 ou plus récent, Firefox 27 ou plus récent, Chrome 30 ou plus récent

Pour les utilisateurs de Macintosh
OS: MacOS 10.7 ou plus récent

Navigateur :
Safari 7+, Firefox 27+, Chrome 30+

iOS
OS: iOS 8 ou plus récent

Android
OS: Android 4.0 ou supérieur

voir le programme complet

PROGRAMME

Veuillez noter :
This course is held online over 3 days on the following schedule (All times in Eastern Time Zone):

10:00 am to 3:00 pm Eastern (includes a 30 minute lunch)

No knowledge of programming is required


Data acquisition and preprocessing

  • Gathering the data,
  • Outliers detection,
  • Transferring raw information into usable data,
  • Splitting the data into training & testing sets.

Classification methods

  • Decision tree, (DT),
  • M5 prime (M5’),
  • K-nearest neighbour algorithm (KNN).

Post-processing

  • Analysis of statistical indices,
  • Scatter plot,
  • Box plot,

Artificial Intelligence (AI) Modeling tools

  • Multilinear regression (MLR)
  • Multivariate adaptive regression splines (MARS)
  • Multi-layer perceptrons (MLP)
  • Adaptive network-based fuzzy inference system (ANFIS),
  • Extreme learning machines (ELM)
  • Firefly Algorithm and Genetic Algorithm (MLP-FFA & MLP-GA)

Questions and Answers and Feedback to Participants on Achievement of Learning Outcomes

FORMATEUR

Hossein Bonakdari, Ph.D., P.Eng.

Hossein Bonakdari, Department of Soils and Agri‐Food Engineering, Université Laval.

Hossein Bonakdari has worked for several organizations, most recently as a faculty member of the Department of Soil and Agri-Food Engineering Department at Laval University, Quebec. He has supervised several Ph.D. and MSc students with teaching experience of more than 16 years in the field of Artificial Intelligence application in Civil and Environmental Engineering.

His fields of specialization and interest include the practical application of soft computing techniques in engineering problems. Results obtained from his research have been published in more than 180 papers in international journals (h-index=26). He has also had more than 150 presentations at national and international conferences. He published two books.

Dr. Bonakdari is currently leading several research projects in collaboration with industrial partners.



INSCRIVEZ-VOUS
VOUS N’ÊTES PAS INTERESSÉ PAR CE COURS ?

Nous visons toujours à améliorer la qualité de nos cours. Veuillez sélectionner les raisons pour lesquelles vous pensez que ce cours est inadéquat (Cochez toutes les cases qui s’appliquent).

Svp cochez cette case :
Note d’évaluation pour cette formation
4.4 sur 5

Évaluation globale de ce cours par ses participants précédents !

UNITÉS & FRAIS
  • 14 Heures de formation continue

1295 $ (+ TPS/TVQ)

Inscrivez-vous




Accumulez vos heures de formation continue avec le CIPE

Tous les cours du CIPE vous permettent d’obtenir vos Heures de formation continue; utiles pour ceux qui doivent accumuler et soumettre leurs Heures comme l’exige l’Ordre des ingénieurs du Québec (OIQ) et l’Ordre des technologues professionnels du Québec (OTPQ).

Ces exigences de formation prennent fin le 31 mars 2025 pour l’OIQ et le 30 avril 2025 pour l’OTPQ !

VOIR LES COURS
Abonnez-vous à notre bulletin électronique
Formation en entreprise

Les AVANTAGES de la formation de groupe en ligne :

  • Efficacité et coût
  • Des cours de grandes qualité
  • Flexibilité
  • Pratique
  • Confidentialité
  • Obtenez un certificat avec des Heures de formation continue
DEMANDER UNE PROPOSITION
Top